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AEETRACT 

Free vibrations of longitudinally-stiffened, circular cy- 
lindrical shells are investigated according to the linear 
theory. The basic equations of vibrations of orthotropic cir- 
cular cylinders are derived and methods of solution (contin- 
uous, "blurred orthotropy" : discontinuous , matrix method) 
are discussed. The method of conversion matrices takes into 
account the effect of discrete stiffening upon vibrational 
behavior. It permits development of equations of frequency 
in closed form and the simple determination of eigenforms. 
The results of theoretical investigations are compared with 
experimental values. 
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1. Introduction - /2 

The vibration of thin-walled structural units is important in vari- 
ous problems of aerospace statics. Thus, the fatigue behavior of plates 
xder sonic stress (jet propulsion) depends upon the natural frequencies 
of the structure. Rocket shells can be excited to free vibrations 
(breathing modes) that for their part in conjunction with the other os- 
ciiiatabie parts of the flight struct-we react upon the control. 

A s  a suitable model for aircraft and flight structures, thin-walled, 
circular cylindrical shells were preliminarily considered; these shells 
being stiffened by stringers. While the vibrations of isotropic cylin- 
drical shells lmder various boundary conditions have been thoroughly 
clarified (Refs. 1, 2, 3) until the present, closely stiffened cylinders 
have been approximated by orthotropic calculation (Refs. 4, 5, 6). 
investigations have been made concerning the effect of discrete stiffen- 
ing. In the present paper, the vibrational behavior of discretely stif- 
fened shells is theoretically and experimentally determined. 

N o  

2. Basic Equation of Vibrations of Orthotropic Circular 
Cylinders 

The investigations are based upon the following assumptions. The 
material of the ideal round cylinder is perfectly elastic,'and wall thick- 
ness is small in proportion to the radius. Displacements are small in 
comparison to wall thickness, and shearing force deformation and the ef- 
fect of rotational inertia are disregarded. 

In Figure 1 the investigated circular cylindrical shell is presented 
with coordinate system and designations, as well as the cross-sectional 
measurements of a stringer. Coordinates of length and periphery are 
designated x and y, while z is radially measured positively toward the 
interior. The corresponding elastic displacements are designated u, v 
and w. Calculations are carried out with dimensionless coordinates { = 

X r and y = J! r' The cylinder has a radius r, w a l l  thickness t and length 1. 

The thin-walled cylinder skin is stiffened on the inside by hat-formed 
stringers that are uniformly distributed over the periphery. 

With the known reductions of Donne11 (Ref. 7) the equations of mo- 
tion for the -. shell element are: 

(2.1) 
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In the last equation, shearing forces G+ and % are eliminated by the 
application of moments. 
occurring in the course of the vibration process. Instead of external 

forces, inertial forces qt - etc., occur in the "conditions of equi- 

librium" (2.1); in this expression qt is the inertial 
middle surface of the stiffened cylinder. 

9, q,, M*, etc. are variable sectional stresses 

a 2, 
a t2 

mass per unit of 

With the assumption of an ideal elastic material, the linear law of 
elasticity for tractions of the middle surface of the orthotropic shell 
whose principal directions of rigidity coincide with the coordinate axes, 
is expressed as: 
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Dij represents bending or torsional stiffness that in isotropic 
shells are: 

(2.4) 

In addition to conditions of equilibrium and the law of elasticity, 
the geometric interdependence of deformation strains and displacements, 
whereby only linear terms (linear theory) are considered: 

4 / 
€ 5  = 7 u 

Alternations of curvature of shells can be approximated according to 
Donne11 (Ref. 7) with the values for thin flat plates: 

4 I/* 

x s = - w  r z  
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A system of l i n e a r  p a r t i a l  d i f f e r e n t i a l  equat ions f o r  e l a s t i c  d i s -  
placements u, v, w i n  longi tudina l ,  pe r iphe ra l  and r a d i a l  d i r e c t i o n s  i s  
developed f o r  v ib ra t ing  or thot ropic  c i r c u l a r  c y l i n d r i c a l  shells from con- 
d i t i o n s  of equi l ibr ium (2.1), l a w  of e l a s t i c i t y  (2 .2) ,  (2 .3)  and geometry 
(2.61, (2 .7) :  

3. Solu t ion  of t h e  Basic Equations 

3.1 Methods of Solu t ion  

The present  system of l i n e a r  p a r t i a l  d i f f e r e n t i a l  equations (2.8)  

I n  case of d i s c r e t e  s t i f f e n i n g  by 
can be p rec i se ly  solved f o r  a purely o r tho t rop ic  ma te r i a l  (e.g. ,  plywood) 
by s e l e c t i o n  of a s u i t a b l e  formula. 
means of s t r i n g e r s  so lu t ion  can be a t t a i n e d  by: 

1) continuous ca l cu la t ion  ( "blurred or thotropy")  
2) discontinuous ca l cu la t ion  (matrix methods) 

3.2 Solu t ion  f o r  "Blurred Orthotropy" 

I n  t h e  f i rs t  method t h e  d i s c r e t e l y  s t i f f e n e d  cy l inder  i s  approxi- 
mated by l ay ing  s t r i n g e r s  on t h e  skin. The degree of accuracy of such 
an  approximation w i l l  na tu ra l ly  depend upon t h e  number of s t r i n g e r s ,  
i .e . ,  t h e  more s t r i n g e r s  l a i d  on, the  c lose r  w i l l  be t h e  approximation. 

For  t h e  deformation funct ions u, v, w i n  the  b a s i c  equation ( 2 . 8 ) ,  
product  expressions from c i r c u l a r  funct ions with unknown amplitudes U, 
v, W are se l ec t ed :  
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1 Thereby E = +with m = the number of half periods and n = number 

After substitution in of vibrations in the direction of the periphery. 
(2.8) there is developed a linear homogeneous system of equations for 
the amplitudes; the vanishing coefficients determinant (frequency deter- 
minant) yields the natural frequencies as roots of a cubic equation: 

(l-v2)w 2 as a dimensionless natural angular with the eigenvalue h = - 

frequency w The three interrelated natural frequencies (cf. Figure 2) 

are three characteristic vibrational forms of equal number and arrange- 
ment of nodal lines, of which amplitude ratio U:V:W yields a represen- 
tation. In addition to distinct vibrations in the longitudinal and pe- 
ripheral direction of the cylinder, there is a distinct transverse vibra- 
tion in a radial direction at high frequencies. 
is associated with the minimum natural frequency (minimum root of the cubic 
equation). 
nical natural frequencies, is of particular importance. If it is to be 
determined advantageously, the factors of inertia in the longitudinal and 

peripheral directions (terms with - and a) can be disregarded in the 
conditions of equilibrium. 
a linear form: 

qr2 
i E  i 

i' 

This transverse vibration 

This transverse vibration, because of its proximity to tech- 

a2, 2 

a t2 a t2 
The cubic eigenvalue equation then assumes 

Another linearization is possible when we replace the cubic parabola by 
means of its tangent to point h = 0; i.e., the quadratic and cubic term 
in (3.2) cancels: 

The two linearizations are differentiated only in the term at h; the dif- 
ference, however, is small enough to be disregarded. 

Figure 2 illustrates the represented state for the example of a 

are plotted logarithmically in Hertzian units (as 
blur-calculated cylinder with 4 stringers. 
ral frequencies f 

The three interrelated natu- 

i 
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roots of the cubic equation) as abscissas against the number of vibra- 
tions n in the peripheral direction. 
periods m is entered in the longitudinal direction. 
tion, the frequencies belonging to a specific m for integral values of 
n are interconnected by dashed lines. 

direction lie broadly above the technically interesting lmer nst.z21 
frequencies of the radial vibration. 

As a parameter the number of half 
For better orienta- 

It will be observed that the fre- /7 
quencies of the longitudinal vibrations in the longitudinal and peripheral 

- 

4. Solution with Conversion Matrices 

As already indicated, the degree of approximation by application of 
stringers on the skin increases with the number of applied stringers. 
In order to investigate the relationship in the case of few stringers 
and principally to clarify the effect of discrete stiffening upon the 
vibrational behavior of the circular cylindrical shell, the method of 
conversion matrices is available. 
the stiffened cylinder, isotropic shell field + stringers, are first 
considered separately. 

In this case the structural parts of 

Figure 2. Natural frequencies of a stiffened cylinder 
j = 4J-L (blurred orthotropy) 
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4.1 System of D i f f e r e n t i a l  Equations, Formula f o r  Solution, 
Boundary Conditions 

The bas i c  equations of v ib ra t ion  of o r tho t rop ic  c i r c u l a r  c y l i n d r i c a l  
s h e l l s  (2.8) are r ewr i t t en  for t h e  i s o t r o p i c  case. 
r i o d i c  f9raul.z f o r  dlsp1acer;;ent fiinctions u, v, w: 

With a temporal pe- 

- I 8  there are developed 3 l i n e a r  p a r t i a l  d i f f e r e n t i a l  equations f o r  u, v, w 
wi th  h as eigenvalue: 

wi th  

. I 

Equations (4 .2)  t o  (4 .4)  agree,  with consideration of Donnell 's  reduc- 
t i o n s ,  w i t h  t hose  of  FlGgge ( R e f .  9 ) .  

On previously mentioned grounds, t h e  i n e r t i a l  members i n  t h e  longi-  
t u d i n a l  and pe r iphe ra l  d i r e c t i o n  ( X  t e r m s  i n  (4 .2)  and ( 4.3) ) can be d i s r e -  
garded. 
the forms : 

A f t e r  e l iminat ion of v o r  u, equations (4.2) and (4.3) assume 
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where the displacement comeonents u and v alone are dependent upon radial 
displacement w. Equations (4.5) and (4.6) in (4.4) yield: 

- -e-' 

k A O A A w  - A A ~ W C  ( f - p Z ) ~ I v = C  (4.7) 

This linear partial differential equation of the 8th order has the radial 
displacement w as sole  dependent variable. 

The equations (4.5), (4.6) are used later for construction of a 
vector of state. 

The isotropic shell field of the cylinder extends between the 
stringers. 
taking into account the stringers distributed over the periphery, we 
set down the formula: 

For its radial displacement w in the course of vibration, 

w (f& (4.8) 
1 

= r Formula (4.8) fulfills the boundary conditions with 5 = 0 and 

V =  w s o  (4.9) 
and therefore it fits a shell that is articulatedly borne at the bound- 
aries on two plates that are rigid in their planes but in a direction 
perpendicular to this they are slack. These bearing relationships are 
taken into consideration in the investigation. 

When formula (4.8) is written into equation (4.7) the result is an 
eigenvalue equation of the 8th order for the isotropic shell field: 

.__- . .  

with 
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It can be demonstrated that: 

is valid for the closed isotropic circular cylindrical shell 

(n = number of vibrations in the peripheral direction) 

Thus the eigenvalue equation (4.10) is transformed into a simple linear 
form : 

results as minimum natural frequency for each selected number of half 
periods m in a longitudinal direction. 

Since equation (4.13) is valid for unstiffened isotropic shells, we 
substitute the stiffened-shell : 

__ - c 

o-= CIC L7q 

are defi- andp and the internal roots in P5, 6 andy7, a. Thenp 
.1, 2 3, 4 

nitely real. With roots (4.11) the solution formula 
as follows: 

i=  7 

(4.8) can be written 

4.2 Construction of the Field Matrix 

The traditional classic approach to further solution is character- 
ized by integration by sectors, determination by fields of the unknown 
amplitudes of vibration by boundary and transformation conditions, deter- 
mination of natural frequencies from a homogeneous system of equations. 
Because of the complexity of the problem this approach is hardly prac- 
ticable. 
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In contrast, the method of conversion matrices offers the possibil- 
ity of a simpler, comprehensible solution of the problem of free vibra- 
tions of longitudinally stiffened circular cylindrical shells. 

By means of solution formula (4.14) for radial displacement w and 
of differential equations (4.5),  (4.6) for u and v, the vector of state 
is constructed whose elements consist of forces and displacements that 
are equal in dimension. 

3 = 

)Q 
i 

P 

(4.15) 

Thereby N = % with Ny = axial force/unit of length in the periph- 
Etiii 

era1 direction. 
> -  I 
U U' = - 
-2 rn 

with u = 

w = w  with w = 

N& r 
T '  = - 

-4 E t m  
with N* = 

Q = V  with v = 

W' = w' with w' = 

longitudinal displacement 

radial displacement 

moment/unit of length in the peripheral 
direction 

shearing force/unit of length in the longi- 
tudinal direction 

peripheral displacement 

inclination of displacement function w in the 
peripheral 

subs ti tuted shearing for ce/unit of length in 
the peripheral direction 
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The de r iva t ions  i n  U' and T '  have t h e  effect t h a t  t h e  same c i r c u l a r  
funct ion s i n  Z< appears as a f a c t o r  i n  all vector  components and hence 
with f u r t h e r  ca l cu la t ion  it can be disregarded. The combination of each 
4 vec to r  components as u and w i n  matrix operations proves t o  be an  ad- 
vantageous form of notat ion.  

The vector  components of t h e  vector  of state i n  t h e  f i e ld  (a t  y~ ) are 
combined via t h e  f i e l d  matrix 5 w i t h  t h e  vector components a t  the begin- 
ning of t h e  f ie ld  (a t  9 = 0 )  

3 

(4.16) 

F i e l d  m a t r i x g i s  an  8 - l i n e  quadratic matrix the elements of which 
are combined as sums of hyperbolic funct ions.  For example: 

and 

'Because of l a c k  of t i m e  a d e t a i l e d  p re sen ta t ion  of a l l  subsequent opera- 
t i o n s  must be dispensed with i n  the  present  r e p o r t :  
reserved  f o r  a DVL r epor t .  

t hese  d e t a i l s  are 



The transformation from field boundary into field can be summarized 
in matrix notation as follows: 

whereby 6 ,  aU column matrices $32 line matrices 
40 (d;.irp ( p a  , etc. diagonal matrices 

4.3 Stiffness Conversion 

The stiffness conversion is summarized by a conversion matrix that 
takes into account the effect of transverse force bending and of the vi- 
brating mass of the stringer. Only the transverse force changes before 
and after stiffening with respect to the transverse force difference 
whose magnitude depends upon radial displacement w ( 3rd component of u) : 

.. 

i 

whereby 

( 4.18) 
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with F = area of s ec t ion  of t h e  s t r i n g e r s  
3x = moment of i n e r t i a  of t h e  s t r i n g e r s  

The f i rs t  summand a t  E expresses t h e  e f f e c t  of t ransverse  force  bending, 
and t h e  second t h a t  of t h e  v ibra t ing  mass of t h e  s t r i n g e r .  

4.4 Transformations 

I n  t h e  equation (4.17) & = f i . .+rg, i the matr ix  product i s  

(4.19) 

If t h e  vec tor  of  s ta te  w i s  converted by means of transform m a t r i x 3  i n t o  
vec tor  of s ta te  W, t h e  transformed f i e l d  matrix 
s impl i f i ed :  

w i l l  be s i g n i f i c a n t l y  5 

(4 .20)  

By v i r t u e  of t h e  s t r u c t u r e  of f i e l d  matrix F a  f u r t h e r  transformation i s  
a v a i l a b l e  with transform matrix:  



The twice transformed field matrix then yields the simple form 

(4.23) 

with A = (Zqp  9) diagonal matrix, and E as unit matrix. 
0 1  

In an analogous manner the stiffness mtrix is twice transformed. . The conversion matrix -F in conversion from field - - - -  - - - 
- - 

wj + 1 2%- NR&i, 
- 

beginning via field and stringer includes a form similar to 
of its simple construction the matrix operation can be followed in the 
conversion mechanism in this clear comprehensible form, and for the sec- 
ond time the linear equation system resulting at the end breaks up and 
can easily be solved in closed form. 

. Because F 

4.5 Frequency Equations and Eigenforms 

After one rotation about the entire cylinder, when the field and 
stiffness conversion again reaches its point of departure, the beginning 
and end vectors must be equipollent. From this condition there arises a 
homogeneous system of equations whose coefficient determinants must 
vanish. Numerical difficulties that occur in calculation of these de- 
terminants can be avoided if the conversion is not carried out over the 
entire shell. The requirement that after one complete rotation the be- 
ginning and end vectors must be identical can also be met by the possible 
solution that after one, two or four fields - 
of stringers in question - the vector of state is equal or opposite to 
the beginning vector. 

depending upon the number 

Because of the simple form of the field and stiffness conversion it 
is possible in this way to derive frequency equations in a general form. 
Using the frequencies thus calculated, the vibration forms in the in- 
dividual fields can be determined by reverse transformation. The nu- 
merical calculations for the example of a longitudinally stiffened vi- 
brating circular cylindrical shell were performed on an IBM 1620 digital 
computer. 

5. Experimental Determination of the Natural Frequencies and 
Free Vibration Forms 

/14 

In order to obtain information concerning accuracy and value of 
the theory, we performed experiments that parallelled the calculations. 
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Figure 3 shows the experimental apparatus. The experimental cylin- 
der of dynamo sheet could be completely turned about its longitudinal 
axis, with connection - for simulation of the selected bearing conditions 
(articulated bearing) - at the edges by a diaphragm. It was continuously 
excited by variable freq1Jencies by an electromagnet mounted to slide on 
a U-shaped support. The vibrations in a radial direction were picked up 
by a band receiver and displayed on cathode ray oscillographs and their 
amplitude distribution over the periphery was recorded with an x, y re- 
cording apparatus. Since only oscillations of the exciter frequency were 
taken into account in amplitude determination, the noncircularities of 
the cylinder do not show in the record. The natural frequencies at maxi- 
mum amplitudes could be well determined by a vacuum tube voltmeter which 
indicated the dependence of the amplitudes on the exciter frequency. 

/Is 

6. Results and Discussion 

In Figure 4 the experimentally measured natural frequencies for a 
cylinder stiffened uniformly by 4 open profiles 
with the theoretical values (conversion matrix method). 
the blur-calculated orthotropic cylinder (Figure 2) as well as to the 
isotropic cylinder, with the effect of longitudinal stiffening there are 
no pure cosine forms with n vibrations in the peripheral direction; 
rather eigenforms appear over the periphery, that are composed of trigo- 
nometric and hyperbolic components. Nevertheless basic cosine-like forms 
can be recognized (cf. also Figure 5) the number of whose vibrations over 
the periphery is designated "n". 
and the natural frequencies f in Hertzian units are plotted on the or- 
dinals. The indicated parameter is the number of half periods rn in a 

( j  = 4J-L) are compared 
In contrast to 

The value "n" is plotted on the abscissa, 

Figure 3. Experimental Apparatus 



longitudinal direction. Dashed lines are supplied through the theoreti- /16 
cal and experimental frequencies belonging to a specific m only for pur- 
poses of better orientation; such lines between integral "n" values 
physically have no meaning. 

The characteristic of the ''curves'' is similar to that of the ortho- 
tropically calculated cylinder (Figure 2): 
cies decrease at first as "n" increases, later to increase again. 
an increasing number of peripheral vibrations the elastic energy de- 
creases and the bending energy increases. On the ascending branch of 
the "curve1' the elastic energy prevails, and in the descending branch 
the bending energy prevails (cf. Ref. 1, p. 249), and thus the frequency 
characteristic is clarified. The least natural frequency at m = 1, "n" = 

5 is approximately 90 Hz, and with an increasing number of longitudinal 
half periods the minima are displaced to greater The correlation 
between theory and experiment is very good, with the maximum deviation 
at m = 4, "n" = 10, circa 6 percent. 

m = 4, "nfl = 9) : 

for a specific m the frequen- 
With 

"n". 

For each curve there is displayed 
6 ;  a theoretical value (m = 1, 'h'' = 10; m = 2, "n" = 4; m = 3, "n" = 

the forms are illustrated in Figure 5 .  
- 

\ 
Here theoretical eigenforms of a cylinder field ( j r  4n, )o=ok 7 2  j 

are presented. 
drawn in for comparison. 

Experimental values taken from the x, y recorder are 

Since the amplitudes of the eigenforms are determinable only up to 
one power, the theoretical values are so coordinated to the theoretical 
curves that the square of the deviation therefrom is a minimum. "he ex- 
perimental values conform very well with the course of the theoretical 
forms. At the beginning and end of the cylinder field the stringers 
are drawn so that those with horizontal tangents with equal amplitudes 
vibrate in the same or opposite direction and those with different am- 
plitudes at the beginning and end of the field have different inclina- 
tions. Moreover the mentioned superposition of several components is to 
be observed in the forms. 

In Table 1 the theoretical and experimental natural frequencies with 
the same number of stringers (j = 4) with different rigidities, four open 
(A) and four closed (e) profiles, are combined. 
tiated according to the number of longitudinal half periods m = 1 + 4, 
and the columns according to the number of peripheral vibrations "n" = 

4 + 12. 
of comparison with experimental results. The correlation is good: the 
experimental values are somewhat below the theoretical frequencies 
throughout. In the case of a longitudinal half period (m = 1) the fre- 
quencies of the more rigid shell ( 4  closed profiles) lie below those of 
the less rigid cylinder (4 open profiles) , the phenomenon being explained 
by the increased influence of the mass of the stringers. 
effect of the increase of the stiffness prevails over that of mass, and 
the frequencies of the more rigid cylinder are higher. 

The lines are differen- 

The theoretical values are shown in parentheses for purposes 

With larger my J 
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Eigenforms of a cyl inder  f i e l d  with d i f f e r i n g  
number of  longi tudina l  ha l f  per iods 



Table 1. N a t u r a l  Frequencies with Different Stiffenings 
j = 4n, 45, Theory (Experiment) 

I2 4 5 6 7 8 9 io i i  

n 9& (Mo, 

0 101 197) 

- (&J 106 (104) 139 (137) 175 (174) 2261224) 26612GU 335 (336, 3U9(3361 

- (90) 1071102) 13811341 1711172) .223:218) 2531250) 331 13251 37713881 
1 

I 

I 
/ 

=I 

Table 2. N a t u r a l  Frequencies w i t h  Differing Numbers of 
Stringers j = 0, 4n, 8n, Theory (Experiment) 

0 336 (358) 234 (2531 190120Q 

4 2 3321336) 236Q291 193 11941 

6 314 - 2341238) 19311921 

0 4731505) 356 1380 

- 
- .  

- -  
4 3  460 - 373(372, 
- .  
B . -  - 373 (367. 

I I  I I 
01 I 1 '  
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If i n  t h e  two observed cases of l ong i tud ina l  s t i f f e n i n g  t h e  d i f f e r -  
ence i s  not so grea t ,  p a r t i c u l a r l y  fo r  frequency minim,  the  s t i f f e n i n g  
conformation as w e l l  as t h e  l imi t ed  number of s t r i n g e r s  could be respon- 
sible. 

Table 2 compares t h e o r e t i c a l  and experimental na tu ra l  f requencies  
with d i f f e r i n g  numbers of s t r i n g e r s  ( j  = 4, 8) of uniform conformation 
(openI I .p ro f i l e )  with t h e  values of t h e  i s o t r o p i c  cyl inder  ( j  = 0 ) .  
l i n e s  are again d i f f e r e n t i a t e d  according t o  t h e  number of l ong i tud ina l  
ha l f  per iods m = 1 + 4 with subdivision according t o  t h e  number of s t r i n -  
gers  j = 0, 4, 8: t h e  columns ind ica te  t h e  number ''n" of per iphera l  
v ibra t ions  ''n" = 4 + 12. 

The 

For m = 1 t h e  frequency diminishes a t  f i rs t  with an  increase  i n  t h e  
number of s t r i n g e r s ,  a phenomenon t h a t  again i s  t o  be a t t r i b u t e d  t o  t h e  
g r e a t e r  inf luence of t h e  increasing mass of t h e  s t r i n g e r s .  The same be- 
havior  i s  s t i l l  t o  be observed a t  m = 2 with g rea t e r  number of pe r iphe ra l  
v ib ra t ions  %", while i n  t h e  region of t h e  minimum of t h e  curve (fre- 
quency above %'') a l ready  a slight increase of frequency occurs with in -  
c reas ing  number of s t r i n g e r s .  
with l a r g e r  numbers of longi tudina l  h a l f  per iods ( m  = 3, 4) because t h e  
bending s t i f f n e s s  of t he  s t r i n g e r s  comes increas ingly  i n t o  play.  

This frequency increase  Is more pronounced 

I n  addi t ion  t o  t h e  given frequencies f o r  t h e  s t i f f e n e d  cy l inder  a t  
which t h e  s t r i n g e r s  vibrate i n  resonance, t h e  frequencies of t h e  i s o t r o p i c  

8, 12 f o r  j = 8 a r e  a l s o  so lu t ions  o f  t h e  problem of na tu ra l  f requencies  
f o r  s t i f f ened  c y l i n d r i c a l  s h e l l s .  With these  "n" number of per iphera l  
v ib ra t ions ,  t h e  v ib ra t iona l  forms i n  t h e  per iphera l  d i r e c t i o n  are so 
adapted t h a t  t h e  s t r i n g e r s  remain a t  rest .  

cy l inder  with even number "n" = 4, 6, 8, 10, 1 2  f o r  j = 4 and I h r r  = 4, - /20 

These frequencies  f o r  s t r inge r s  a t  rest with even "riff were de t e r -  
mined experimentally as w e l l  as with d i s c r e t e  ca lcu la t ion .  m e y  agree 
very w e l l  wi th  t h e  values of t h e  i so t rop ic  cyl inder  obtained by ca lcu la-  
t i o n  (b lu r r ed  orthotropy a t  j = 0)  and by experiment, bu t  they are not  
presented here .  

A comparison of t he  frequencies of t h e  i s o t r o p i c  cyl inder  with those  
of t h e  s t i f f ened  cyl inder  shows t h a t  with t h e  present  measurements t h e  
d i f f e rences ,  e spec ia l ly  f o r  m = 1, and m = 2 are not very g rea t .  

I n  Figure 6 t h e  na tu ra l  frequencies of continuous ca l cu la t ion  
( "blurred orthotropy") a r e  contrasted with t h e  frequencies of discon- 
t inuous  ca l cu la t ion  (conversion matrices) f o r  a cyl inder  s t i f f e n e d  by 
8 open p r o f i l e s  ( j  = 8n). 
f o r  t h e  number of longi tudina l  half  per iods m. For these  frequencies  
t h e  number of pure per iphera l  v ibra t ions  n are given as absc issa :  
comes "n" f o r  discontinuous ca lcu la t ion  as previously explained. I n  

The former are interconnected by dashed l i n e s  

n be- 
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addi t ion  as f u r t h e r  so lu t ion  the  frequencies f o r  t h e  case of s t r i n g e r  a t  
rest a t  "nrr = 4, 8, 1 2  i s  drawn i n ,  as w e l l  as a l l  determined experi-  
mental values.  

/21 

It is  t o  be observed t h a t  f o r  one and two h a l f  per iods i n  t h e  longi -  
t ud ina l  d i r e c t i o n  t h e  s t r i c t  consideration of d i s c r e t e  s t i f f e n i n g  has  
l i t t l e  advantage over b lur red  ca lcu la t ion .  The frequencies  according t o  
t h e  conversion matr ix  method only f a l l  below those  of b lu r r ed  calcula-  
t i o n  as m increases :  
ge r s  appl ied  t o  t h e  sk in  i n  t h e  approximation increase  t h e  t h e o r e t i c a l  
s t i f f n e s s  of t h e  v ib ra t ing  cyl inder  t o  an unpermissible value.  This 
e f f e c t  t h a t  falsifies t h e  results i s  n a t u r a l l y  g rea t e r  depending upon an 
increas ing  number of longi tudina l  half  per iods because thereby t h e  bend- 
ing  s t i f f n e s s  of t h e  s t r i n g e r  increases  i n  i t s  e f f ec t ,whereby the  fre- 
quencies are increased. Discre te  ca lcu la t ion  and experiment agree w e l l  
a l s o  a t  high m. A t  m = 1 and m = 2 t h e  results of b lur red  ca l cu la t ions  
do not  deviate s i g n i f i c a n t l y  from those of discontinuous ca l cu la t ion  and 
a r e  i n  t h e  v i c i n i t y  of t h e  frequencies of t h e  uns t i f fened  s h e l l .  This 
i nd ica t e s  t h a t  here  t h e  e f f e c t s  of s t i f f n e s s  and v ib ra t ing  mass of t h e  
s t r i n g e r  are almost n u l l i f i e d .  

a t  m = 4 already around 10 percent .  The f e w  s t r i n -  

b l  
P rec i se  inves t iga t ion  of t h e  range of v a l i d i t y  of ca l cu la t ion  

urred or thotropy must s t i l l  be undertaken. - .  - I- -. - -  

with 

rest 

Figure 6. 
mat r ix  method ( j  = 8n) 

Natural frequencies i n  b lur red  or thotropy and 
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